Беседы о ракетных двигателях. Электрический ракетный двигатель Электрические ракетные двигатели ил м 1964

ЭЛЕКТРОРАКЕТНЫЕ ДВИГАТЕЛИ (электрореактивные двигатели, ЭРД)-космич. реактивные двигатели, в к-рых направленное движение реактивной струи создаётся за счёт электрич. энергии. Электроракетная двигательная установка (ЭРДУ) включает собственно ЭРД, систему подачи и хранения рабочего вещества и систему, преобразующую электрич. параметры источника электроэнергии к номинальным для ЭРД значениям и управляющую функционированием ЭРД. ЭРД - двигатели малой тяги, действующие в течение длит. времени (годы) на борту космич. летательного аппарата (КЛА) в условиях невесомости либо очень малых гравитац. полей. С помощью ЭРД параметры траектории полёта КЛА и его ориентация в пространстве могут поддерживаться с высокой степенью точности либо изменяться в заданном диапазоне. При эл--магн. либо эл--статич. ускорении скорость истечения реактивной струи в ЭРД значительно выше, чем в жидкостных или твердо-топливных ракетных двигателях; это даёт выигрыш в полезной нагрузке КЛА. Однако ЭРД требуют наличия источника электроэнергии, в то время как в обычных ракетных двигателях носителем энергии являются компоненты топлива (горючее и окислитель). В семейство ЭРД входят плазменные двигатели (ПД), эл--хим. двигатели (ЭХД) и ионные двигатели (ИД).

Электрохимические двигатели . В ЭХД электроэнергия используется для нагрева и хим. разложения рабочего вещества. ЭХД подразделяются на электронагревные (ЭНД), термокаталитические (ТКД) и гибридные (ГД) двигатели. В ЭНД рабочее вещество (водород, аммиак) нагревается электронагревателем и затем истекает со сверхзвуковой скоростью через сопло (рис. 1). В ТКД электроэнергией нагревается катализатор (до темп-ры ~500 o C), химически разлагающий рабочее вещество (аммиак, гидразин); далее продукты разложения истекают через сопло. В ГД происходит сначала разложение рабочего вещества, потом подогрев продуктов разложения и их истечение. Конструкция ЭХД и используемые конструкц. материалы рассчитаны на включение на борту КЛА в течение 7-10 лет при числе запусков до 10 5 , длительности непрерывной работы ~ 10-100 ч и отклонении тяговых характеристик от номинала не более 5-10%. Уровень потребляемой ЭХД электрич. мощности - десятки Вт, диапазон тяг - 0,01 -10 H. ЭХД имеют очень низкую для ЭРД энергетич. цену тяги ~3 кВт/Н, большую скорость истечения струи (3 км/с) за счёт малого молекулярного веса рабочего вещества и продуктов его разложения. Гидразиновый ГД с тягой 0,44 H успешно работал на спутнике связи "Интел-сат-5"; аммиачный ЭНД с тягой 0,15 H входит в состав штатной ЭРДУ спутников серии "Метеор", к-рая корректирует орбиту и ориентацию спутника.

Рис. 1. Схема электронагревного двигателя: 1 -пористый электронагреватель; 2-тепловой экран; 3 - кожух; 4 - сопло .

Ионные двигатели . В ИД положит. ионы рабочего вещества ускоряются в эл--статич. поле. ИД (рис. 2) состоит из эмиттера ионов 4, ускоряющего электрода 5 с отверстиями (щелями), сквозь к-рые проходят ускоренные ионы, и внеш. электрода 6 (экрана), в роли к-рого обычно используют корпус ИД. Ускоряющий электрод находится под отрицат. потенциалом (~10 3 -10 4 B) относительно эмиттера. Электрич. ток и пространств. электрич. реактивной струи должны быть нулевыми, поэтому выходящий ионный пучок нейтрализуется электронами, к-рые эмитирует нейтрализатор 7. Внеш. электрод находится под потенциалом, отрицательным относительно эмиттера и положительным относительно ускоряющего электрода; положит. смещение потенциала выбирается таким, чтобы сравнительно малоэнергичные электроны из нейтрализатора запирались электрич. полем и не попадали в ускоряющий промежуток между эмиттером и ускоряющим электродом. Энергия ускоренных ионов определяется разностью потенциалов между эмиттером и внеш. электродом. Наличие положит. пространств. заряда в ускоряющем промежутке ограничивает ионный ток из эмиттера. Осн. параметры ИД: скорость истечения, тяговый кпд, энергетич. цена тяги (Вт/Н), энергетич. цена иона (эВ/ион) - кол-во энергии, затрачиваемое на образование иона. Степень рабочего вещества в ИД должна быть как можно выше(>0,90,95).

Рис. 2. Схема ионного двигателя с объёмной ионизацией конструкции Г. Кауфмана: 1 - катод газоразрядной каме ры; 2- анод; 3 -магнитная катушка; 4-эмитирующий электрод; 5 - ускоряющий электрод; 6 - внешний электрод; 7 - нейтрализатор .

В зависимости от типа эмиттера ИД подразделяются на двигатели с поверхностной ионизацией (ИДПИ), коллоидные двигатели (КД) и двигатели с объёмной ионизацией (ИДОИ). В ИДПИ ионизация происходит при пропускании паров рабочего вещества сквозь пористый эмиттер; рабочего вещества должна быть меньше работы выхода материала эмиттера. Обычно выбирается пара цезий (рабочее вещество) - вольфрам (эмиттер). Эмиттер подогревается до темп-ры 1500 o K во избежание конденсации рабочего вещества. В КД (существуют только лаб. прототипы) рабочее вещество (20%-ный раствор йодистого калия в глицерине) распыляется через капилляры в виде положительно заряженных микрокапель в ускоряющий промежуток; электрич. заряд микрокапель возникает в процессе экстракции струек из капилляров в сильном электрич. поле и последующем их распаде на капли. Источником ионов в ИДОИ является газоразрядная камера (ГРК), в к-рой атомы рабочего вещества (паров металлов, инертных газов) ионизуются электронным ударом в газовом разряде низкого давления [разряд между электродами 1 и 2 (рис. 2) либо безэлектродный СВЧ-разряд]; ионы из ГРК вытягиваются в ускоряющий промежуток сквозь отверстия эмитирующего электрода-стенки ГРК, образующего вместе с ускоряющим электродом ионно-оптич. систему (ИОС) для ускорения и фокусировки ионов. Стенки ГРК, кроме эмитирующего электрода, магнитоизолированы от плазмы. ИДОИ - наиб. разработанные с инженерн. и физ. точек зрения ИД, их тяговый кпд ~70%, подтверждённый в наземных испытаниях ресурс работы доведён до 2 · 10 4 ч. Ресурс работы ИД ограничивается эрозией ускоряющего электрода вследствие его катодного распыления вторичными ионами, возникающими в результате перезарядки быстрых ускоренных ионов на медленных нейтральных атомах рабочего вещества. Энергетич. цены тяги и иона в ИД (за исключением КД) весьма значительны (2·10 4 Вт/H, 250 эВ/ион). По этой причине ИД пока не используются в космосе в качестве рабочих ЭРД (ЭХД, ПД), хотя они неоднократно испытывались на борту КЛА. Наиб. значительно испытание по программе SERT-2 (1970, США); в состав ЭРДУ входили две ИДОИ конструкции Г. Кауфмана (рабочее тело - ртуть, потребляемая мощность 860 Вт, кпд 68%, тяга 0,03 H), проработавшие без отказа непрерывно 3800 ч и 2011 ч соответственно и возобновившие функционирование после длит. перерыва.

ПД по схеме плазменных ускорителей с замкнутым дрейфом электронов и протяжённой зоной ускорения систематически используется на КЛА, в особенности на геостационарных спутниках связи.

Лит.: Гильзин К. А., Электрические межпланетные корабли, 2 изд., M., 1970; Морозов А. И., Шубин А. П., Космические электрореактивные двигатели, M., 1975; Гришин С. Д., Лесков Л. В., Козлов H. П., Электрические ракетные двигатели, M., 1975.

Отличительной особенностью реактивных электрических двигателей состоит в том, что источник энергии и рабочее вещество разделены, а передача энергии от источника к рабочему веществу осуществляется с помощью электромагнитных взаимодействий. Это позволяет получить высокие скорости истечения рабочего вещества. Это, в свою очередь, делает такой класс двигателей наиболее экономичным при выполнении транспортных работ в космосе. Вниманию посетителей сайта предлагается краткое описание некоторых двигателей этого класса.

Рисунок 22 - Электрический реактивный двигатель

Среди класса электрореактивных двигателей основное внимание уделяется т.н. плазменно-ионному двигателю.

Отличительная его особенность в том, что в нём используется разряд с осциллирующими электронами. Двигаясь в продольном магнитном поле сравнительно небольшой величины, электроны не могут сразу попасть на наружный кольцевой электрод - анод и участвуют в неоднократных ионизирующих столкновениях. Ускорение ионов происходит в продольном электрическом поле, а для компенсации на выходе ускорителя их объёмного заряда используется катод - компенсатор.

Плазменно-ионные двигатели обладают высоким КПД в широком диапазоне удельных импульсов. Они характеризуются, к тому же, низкими значениями плотности тяги. Т.е. удельная масса двигателя выше.

Плазменно-ионные двигатели прошли модельные испытания, однако полномасштабные испытания до сих пор не выполнены.

Для решения задач управления и ориентации космических аппаратов наиболее удобными оказываются импульсные плазменные двигатели. И наиболее перспективные в этом классе электрореактивных двигателей являются эрозионные плазменные двигатели.

В этих двигателях плазменный сгусток создаётся при пропускании большого тока, возникающего при разряде электрического конденсатора вдоль поверхности находящегося между электродами диэлектрика, материал которого испаряется, ионизуется и ускоряется под действием электромагнитных сил или газодинамических сил.

Импульсный плазменный двигатель обладает тем преимуществом, что возможно большое число включений (до 109); малым значением одного импульса (около 100 мкН*с); отсутствием импульса последействия.

Электронагревные реактивные двигатели отличаются тем, что электрическая энергия в них расходуется на нагрев и ускорение рабочего вещества при прохождении его через теплообменник. У двигателей этого типа минимальные энергетические затраты на создание тяги. В результате экспериментальных исследований было установлено, что оптимальным рабочим веществом для них является гидразин (H2N)2.

Рисунок 23 - Электрический реактивный двигатель

Гидразин представляет собой однокомпонентное эндотермическое топливо, поэтому при его химическом разложении на водород и азот в присутствии катализатора выделяется энергия. Это позволило создать целый особый класс электрореактивных двигателей - каталитические двигатели. Существуют и термокаталитические двигатели, в которых более простые катализаторы, выполненные в форме опресованных проволочных спиралей, обладают большим ресурсом.

Наименьшие полученные значения тяги для таких двигателей составляют порядка 10 мН.

Область применения электрореактивных двигателей:

  • 1. Управление движением космических кораблей.
  • 2. Корректировка орбиты, компенсация торможения аппаратов в верхних слоях атмосферы, перевод с одной орбиты на другую
  • 3. Транспортные операции, связанные с осуществлением полётов к Луне и другим планетам Системы

Основные характеристики плазменно-ионных двигателей:

  • 1. Электрическая потребляемая мощность - 1 кВт.
  • 2. Создаваемая тяга - 27 мН
  • 3. Скорость истечения - 42 км/с
  • 4. Тяговый КПД - 67%
  • 5. Напряжение - 2800 В
  • 6. Рабочее вещество - ртуть

Этот обширный класс двигателей объединяет различные типы двигателей, которые очень интенсивно разрабатываются в настоящее время. Разгон рабочего тела до определенной скорости истечения производится за счет электрической энергии. Энергия получается от атомной или солнечной электростанции, находящейся на борту космического корабля (в принципе даже от химической батареи). Мыслимы многочисленные типы бортовых энергетических установок .

Схемы разрабатываемых электрических двигателей чрезвычайно разнообразны. Мы рассмотрим три основные группы электрических двигателей , различающиеся по способу, с помощью которого происходит выброс рабочего тела из ракеты. (Возможны, однако, и иные способы классификации электрических двигателей

Электротермические двигатели. Эти двигатели, как и все рассматривавшиеся нами до сих пор, относятся к тепловым. Нагретое до высокой температуры рабочее тело (водород) превращается в плазму - электрически нейтральную смесь

положительных ионов и электронов. Методы электрического нагрева могут быть различны: нагрев в электрической дуге (рис. 10), с помощью вольфрамовых нагревательных элементов, посредством электрического разряда и другие

Рис. 10. Схема электродугового двигателя

При лабораторных испытаниях электродуговых двигателей достигнута скорость истечения порядка Если удастся осуществить магнитную изоляцию плазмы от стенок тяговой камеры, температура плазмы сможет быть очень высока и скорость истечения доведена до Реактивные ускорения в электротермических двигателях будут порядка .

Первый в мире электротермический двигатель был разработан в 1929-1933 гг. в Советском Союзе под] руководством В. П. Глушко в знаменитой Газодинамической лаборатории .

Электростатические (ионные) двигатели . В этих двигателях мы впервые сталкиваемся с разгоном рабочего тела «холодным» путем. Частицы рабочего тела (пары легко ионизуемых металлов, например рубидия или цезия) теряют свои электроны в ионизаторе и разгоняются до большой скорости в электрическом поле. Чтобы электрический заряд струи заряженных частиц позади аппарата не препятствовал дальнейшему истечению, эта струя нейтрализуется вне его выбрасыванием отнятых у атомов электронов (рис. 11).

Рис. 11. Принципиальная схема ноьного двигателя

В ионном двигателе не существует температурных ограничений. Поэтому в принципе возможно достижение сколь угодно больших скоростей истечения, вплоть до приближающихся к скорости света . Однако слишком высокие скорости истечения приходится исключить из рассмотрения, так как они потребовали бы огромной мощности электростанции на борту корабля.

Рис. 12. Схема образования движущихся плазмоидов в «импульсном» плазменном двигателе 11.18].

При этом масса двигательной установки возросла бы гораздо сильнее, чем тяга, и в результате сильно бы снизилось реактивное ускорение. Цель космического полета, его продолжительность, качество энергетической установки определяют наилучшую, оптимальную для уданной задачи скорость истечения. Она находится, по мнению одних авторов, в пределах , по мнению других, , . Ионные двигатели будут способны сообщить реактивное ускорение порядка .

Большие надежды возлагаются некоторыми специалистами на особый тип электростатических двигателей - коллоидные двигатели. В этих двигателях ускоряются большие заряженные молекулы и даже группы молекул или пылинки диаметром около 1 микрона .

Рис. 13. Схема магнитогидродинамического двигателя со скрещенными полями.

Магнитогидродинамические (электродинамические, электромагнитные, магнит -плазменные, «плазменные») двигатли . Эта группа двигателей объединяет огромное разнообразие схем, в которых плазма разгоняется до некоторой скорости истечения изменением магнитного поля или взаимодействием электрического и магнитного полей. Конкретные методы разгона плазмы, а также ее получения весьма различны. В плазменном двигателе (рис. 12) сгусток плазмы («плазмоид») разгоняется магнитным давлением . В «двигателе со скрещенными электрическим и магнитным полями» (рис. 13) через плазму,

помещенную в магнитное поле, пропускается электрический ток (плазма - хороший проводник), и в результате плазма приобретает скорость (подобно проволочной рамке с током, помещенной в магнитном поле) . Оптимальная скорость истечения для магнитогидродинамических двигателей, вероятно, будет порядка при реактивном ускорении

В лабораторных испытаниях магнитогидродинамических двигателей достигнуты скорости истечения до .

Следует отметить, что во многих случаях отнести двигатель к тому или иному классу бывает затруднительно.

Электрические двигатели с забором рабочего тела из верхней атмосферы . Летательный аппарат, движущийся в верхних слоях атмосферы, может использовать разреженную внешнюю среду в качестве рабочего тела для электрического двигателя. Подобный электрический двигатель аналогичен воздушно-реактивному двигателю в классе химических двигателей. Поступающий через воздухозаборник газ может использоваться в качестве рабочего тела или непосредственно, или после накопления (и, возможно, сжижения) его в баках. Возможен также вариант, при котором в баках одного летательного аппарата будет накапливаться рабочее тело и перекачиваться затем в баки другого аппарата.

Важным преимуществом всех типов электрических двигателей является простота регулировки тяги. Серьезной трудностью - необходимость освобождения от избытка тепла, выделяемого ядерным реактором. Этот избыток не уносится рабочим телом и не отдается окружающей среде, которая практически отсутствует в мировом пространстве. Освободиться от него можно лишь с помощью радиаторов, имеющих большую поверхность.

В 1964 г. в США было проведено первое успешное испытание в течение 31 мин ионного двигателя, установленного на контейнере, запущенном на баллистическую траекторию. В реальных условиях космоса ионные и плазменные двигатели быливпервые испытаны на советском корабле «Восход-1» и советской станции «Зонд-2», запущенных в 1964 г. («Зонд-2» - всторону Марса) ; наряду с обычными они использовались в системах ориентации. В апреле 1965 г. ионный двигатель на жидком цезии испытывался вместе с ядерным реактором «Снеп-10А» на американском спутнике Земли, развивая тягу (вместо Цезиевые ионные двигатели с расчетной регулируемой тягой и электротермические двигатели, использующие в качестве рабочего тела жидкий аммиак и развивающие тягу до испытывались с переменным успехом на спутниках серии запускавшихся в США с 1966 г.

Электрический ракетный двигатель

Электрический ракетный двигатель – ракетный двигатель, принцип действия которого основан на использовании, для создания тяги электрической энергии, получаемой от энергоустановки, находящейся на борту космического аппарата. Основная сфера применения – небольшая коррекция траектории, а также ориентация в пространстве космических аппаратов. Комплекс, состоящий из электрического ракетного двигателя, системы подачи и хранения рабочего тела, системы автоматического управления и системы электропитания, называется электроракетной двигательной установкой.

Упоминание о возможности использования в ракетных двигателях электрической энергии для создания тяги встречается в трудах К. Э. Циолковского. В 1916-1917 гг. были проведены первые эксперименты Р. Годдардом, и уже в 30-х гг. XX в. под руководством В. П. Глушко был создан один из первых электрических ракетных двигателей.

В сравнении с другими ракетными двигателями электрические позволяют увеличить срок существования космического аппарата, и при этом значительно снижается масса двигательной установки, что позволяет увеличить полезную нагрузку, получить наиболее полные массогабаритные характеристики. Используя электрические ракетные двигатели, можно сократить длительность полета к дальним планетам, а также сделать полет к какой-либо планете возможным.

В середине 60-х гг. ХХ в. активно велись испытания электрических ракетных двигателей на территории СССР и США, а уже в 1970-х гг. они использовались как штатные двигательные установки.

В России классификация идет по механизму ускорения частиц. Можно выделить следующие типы двигателей: электротермические (электронагревные, электродуговые), электростатические (ионные, в том числе коллоидные, стационарные плазменные двигатели с ускорением в анодном слое), сильноточные (элекромагнитные, магнитодинамические) и импульсные двигатели.

В качестве рабочего тела возможно применение любых жидкостей и газов, а также их смеси. Для каждого типа электродвигателя необходимо применять соответствующие рабочие тела для достижения наилучших результатов. Для электротермических традиционно применяется аммиак, в работе электростатических двигателей используется ксенон, в сильноточных – литий, а для импульсных наиболее эффективным рабочим телом является фторопласт.

Одним из главных источников потерь является энергия, затрачиваемая на ионизацию на единицу ускоренной массы. Преимуществом электрических ракетных двигателей является малый массовый расход рабочего тела, а также высокая скорость истечения ускоренного потока частиц. Верхняя граница скорости истечения теоретически находится в пределах скорости света.

В настоящее время для различных типов двигателей скорость истечения колеблется в пределах от 16 до 60 км/с, хотя перспективные модели смогут дать скорость истечения потока частиц до 200 км/с.

Недостатком является очень малая плотность тяги, также необходимо отметить: внешнее давление не должно превышать давление в ускорительном канале. Электрическая мощность современных электрических ракетных двигателей, применяемых на космических аппаратах, колеблется от 800 до 2000 Вт, хотя теоретическая мощность может достигать мегаватт. КПД электрических ракетных двигателей невысок и варьируется от 30 до 60%.

В ближайшее десятилетие этот тип двигателей в основном будет выполнять задачи по коррекции орбиты космических аппаратов, находящихся как на геостационарных, так и на низких околоземных орбитах, а также для доставки космических аппаратов с опорной околоземной орбиты на более высокие, например геостационарную.

Замена жидкостного ракетного двигателя, выполняющего функцию корректора орбиты, на электрический позволит снизить массу типового спутника на 15%, а если увеличить срок его активного пребывания на орбите, то на 40%.

Одним из наиболее перспективных направлений развития электрических ракетных двигателей является их совершенствование в направлении увеличения мощности до сотен мегаватт и удельного импульса тяги, а также необходимо добиться стабильной и надежной работы двигателя на более дешевых веществах, таких как аргон, литий, азот.

Из книги Большая Советская Энциклопедия (АН) автора БСЭ

Из книги Большая Советская Энциклопедия (ДВ) автора БСЭ

Из книги Большая Советская Энциклопедия (РА) автора БСЭ

Из книги Большая Советская Энциклопедия (СО) автора БСЭ

Из книги Большая Советская Энциклопедия (СУ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЭЛ) автора БСЭ

Из книги Большая энциклопедия техники автора Коллектив авторов

Из книги автора

Из книги автора

Авиационный ракетный двигатель Авиационный ракетный двигатель – двигатель прямой реакции, преобразующий какой-либо вид первичной энергии в кинетическую энергию рабочего тела и создающий реактивную тягу. Сила тяги приложена непосредственно к корпусу ракетного

Из книги автора

Универсальный электрический двигатель Универсальный электрический двигатель – это один из типов однофазного коллекторного двигателя последовательного возбуждения. Работать может как на постоянном, так и на переменном токе. Причем при использовании универсальных

Из книги автора

Электрический двигатель Электрический двигатель – это машина, преобразующая электрическую энергию в

Из книги автора

Верньерный ракетный двигатель Верньерный ракетный двигатель – ракетный двигатель, который предназначен для обеспечения управления ракетой-носителем на активном участке. Иногда используется название «рулевой ракетный

Из книги автора

Радиоизотопный ракетный двигатель Радиоизотопный ракетный двигатель – ракетный двигатель, в котором нагрев рабочего тела происходит за счет выделения энергии при распаде радионуклида, либо продукты реакции распада сами создают реактивную струю. С точки зрения

Из книги автора

Разгонный ракетный двигатель Разгонный ракетный двигатель (маршевый) – основной двигатель ракетного летательного аппарата. Его основная задача – это обеспечение необходимой скорости

Из книги автора

Солнечный ракетный двигатель Солнечный ракетный двигатель, или фотонный ракетный двигатель, – ракетный двигатель, использующий для получения тяги реактивный импульс, который создают частицы света, фотоны при воздействии на поверхность. Примером простейшего

Из книги автора

Тормозной ракетный двигатель Тормозной ракетный двигатель – ракетный двигатель, который используется для торможения при возврате космического аппарата на поверхность Земли. Торможение необходимо для снижения скорости космического аппарата перед входом в более

Единственное с чем согласен с автором, так это то что так это что вокруг понятия "реактивная энергия" немало легенд... В отместку видимо автор выдвинул ещё и свою...Путано...противоречиво...изобилие всяких: ""энергия приходит, энергия уходит..." Итог вообще получился шокирующий, истина перевёрнута с ног на ноги: "Вывод - реактивный ток вызывает нагрев проводов, не совершая при этом никакой полезной работы" Господин, дорогой! нагрев это уже работа!!! Мнение моё, тут людям с техническим образованием без векторной диаграммы синхронного генератора под нагрузкой не склеить описание процесса грамотно, а людям интересующимся могу предложить простой вариант, без затей.

Итак о реактивной энергии. 99% электричества напряжением 220 вольт и более вырабатывается синхронными генераторами. Электроприборами в быту и работе мы используем разные, большинство из них "греют воздух", выделяют теплоту в той или иной степени...Пощупайте телевизор, монитор компьютера, о кухонной электропечи я уже не говорю, везде чувствуется тепло. Это всё потребители активной мощности в электросети синхронного генератора. Активная мощность генератора это безвозвратные потери вырабатываемой энергии на тепло в проводах и приборах. Для синхронного генератора передача активной энергии сопровождается механическим сопротивлением на приводном валу. Если бы Вы, уважаемый читатель вращали генератор вручную, Вы бы сразу же почувствовали повышенное сопротивление Вашим усилиям и означало бы это одно, кто-то в вашу сеть включил дополнительное число нагревателей, т.е повысилась активная нагрузка. Если в качестве привода генератора у вас дизель, будьте уверены, расход топлива возрастает молниеносно, т.к именно активная нагрузка потребляет ваше топливо. С реактивной энергией иначе...Скажу я вам, невероятно, но некоторые потребители электроэнергии сами являются источниками электроэнергии, пусть на очень короткое мгновение, но являются. А если учесть что переменный ток промышленной частоты изменяет своё направление 50 раз в секунду, то такие (реактивные) потребители 50 раз в секунду передают свою энергию сети. Знаете как в жизни, если кто-то что-то добавляет к оригиналу своё без последствий это не остаётся. Так и здесь, при условии, что реактивных потребителей много, или они достаточно мощные, то синхронный генератор развозбуждается. Возвращаясь к нашей прежней аналогии где в качестве привода Вы использовали свою мышечную силу, можно будет заметить, что несмотря на то что Вы не изменили ни ритма вращая генератор, ни не почувствовали прилива сопротивления на валу, лампочки в вашей сети вдруг погасли. Парадокс, тратим топливо, вращаем генератор с номинальной частотой, а напряжения в сети нет... Уважаемый читатель, выключи в такой сети реактивные потребители и всё восстановится. Не вдаваясь в теорию развозбуждение происходит когда магнитные поля внутри генератора, поле системы возбуждения вращающейся вместе с валом и поле неподвижной обмотки соединённой с сетью поворачиваются встречно друг другу, тем самым ослабляю друг друга. Генерация электроэнергии при понижении магнитного поля внутри генератора уменьшается. Техника ушла далеко в перёд, и современные генераторы оснащены автоматическими регуляторами возбуждения, и когда реактивные потребители "провалят" напряжение в сети, регулятор сразу же повысит ток возбуждения генератора, магнитный поток восстановится до нормы и напряжение в сети восстановится Понятно, что ток возбуждения имеет и активную составляющую, так что извольте добавить и топливо в дизеле.. В любом случае, реактивная нагрузка негативно влияет на работу электросети, особенно в момент подключения реактивного потребителя к сети, например, асинхронного электродвигателя...При значительной мощности последнего всё может закончится плачевно, аварией. В заключение, могу добавить для пытливого и продвинутого оппонента, что, есть и реактивные потребители с полезными свойствами. Это всё те что обладают электроёмкостью...Включи такие устройства в сеть и уже электрокомпания должна вам)). В чистом виде это конденсаторы. Они тоже отдают электроэнергию 50 раз в секунду, но при этом магнитный поток генератора наоборот увеличивается, так что регулятор может даже понизить ток возбуждения, экономя затраты. Почему мы раньше об этом не оговорились...а зачем...Дорогой читатель обойди свой дом и поищи емкостной реактивный потребитель...не найдешь...Разве только раскурочишь телевизор или стиральную машину...но пользы от этого понятно не будет....<

Бухгалтерский учет